martes, 21 de abril de 2009

AMINOACIDOS Y PROTEINAS

Estructura general de un aminoácido

La estructura general de un aminoácido se establece por la presencia de un carbono central alfa unido a: un grupo carboxilo,un grupo amino, un hidrógeno y la cadena lateral.

Técnicamente hablando, se los denomina alfa-aminoácidos, debido a que el grupo amino (–NH2) se encuentra a un átomo de distancia del grupo carboxilo (–COOH). Como dichos grupos funcionales poseen H en sus estructuras químicas, son grupos susceptibles a los cambios de pH; por eso, al pH de la célula prácticamente ningún aminoácido se encuentra de esa forma, sino que se encuentra ionizado.

Los aminoácidos a pH bajo (ácido) se encuentran mayoritariamente en su forma catiónica (con carga positiva), y a pH alto (básico) se encuentran en su forma aniónica (con carga negativa). Sin embargo, existe un pH especifico para cada aminoácido, donde la carga positiva y la carga negativa son de la misma magnitud y el conjunto de la molécula es eléctricamente neutro. En este estado se dice que el aminoácido se encuentra en su forma de ion dipolar o zwitterión.

Clasificación

Según las propiedades de su cadena

Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral:

Neutros polares, polares o hidrófilos : Serina (Ser,S), Treonina (Thr,T), Cisteína (Cys,C), Asparagina (Asn,N), Glutamina (Gln,Q) y Tirosina (Tyr,Y).
Neutros no polares, apolares o hidrófobos: Glicina (Gly,G), Alanina (Ala,A), Valina (Val,V), Leucina (Leu,L), Isoleucina (Ile,I), Metionina (Met,M), Prolina (Pro,P), Fenilalanina (Phe,F) y Triptófano (Trp,W).
Con carga negativa, o ácidos: Ácido aspártico (Asp,D) y Ácido glutámico (Glu,E).
Con carga positiva, o básicos: Lisina (Lys,K), Arginina (Arg,R) e Histidina (His,H).
Aromáticos: Fenilalanina (Phe,F), Tirosina (Tyr,Y) y Triptófano (Trp,W) (ya incluidos en los grupos neutros polares y neutros no polares).

Según su obtención

A los aminoácidos que necesitan ser ingeridos por el cuerpo para obtenerlos se los llama esenciales; la carencia de estos aminoácidos en la dieta limita el desarrollo del organismo, ya que no es posible reponer las células de los tejidos que mueren o crear tejidos nuevos, en el caso del crecimiento. Para el ser humano, los aminoácidos esenciales son:

•Valina (Val)
•Leucina (Leu)
•Treonina (Thr)
•Lisina (Lys)
•Triptófano (Trp)
•Histidina (His)
•Fenilalanina (Phe)
•Isoleucina (Ile)
•Arginina (Arg) (Requerida en niños y tal vez ancianos)
•Metionina (Met)

Según su capacidad de sintesis aminoacidos esenciales o indispensables:
los organismos superiores no los sintetizan, es necesario incluirlos en la dieta. Estos son:

•Valina (Val)
•Leucina (Leu)
•Metionina (Met)
•Triptófano (Trp)
•Histidina (His)

A los aminoácidos que pueden ser sintetizados por el cuerpo se los conoce como no esenciales y son:

•Alanina (Ala)
•Prolina (Pro)
•Glicina (Gly)
•Serina (Ser)
•Cisteína (Cys)
•Asparagina (Asn)
•Glutamina (Gln)
•Tirosina (Tyr)
•Ácido aspártico (Asp)
•Ácido glutámico (Glu)

Aminoácidos codificados en el genoma

Los aminoácidos proteicos, canónicos o naturales son aquellos que están codificados en el genoma; para la mayoría de los seres vivos son 20:
alanina, arginina, asparagina, aspartato, cisteína, fenilalanina, glicina, glutamato, glutamina, histidina, isoleucina, leucina, lisina, metionina, prolina, serina, tirosina, treonina, triptófano y valina.

Aminoácidos no proteicos

Existen ademas de los 20 aminoácidos proteicos alrededor de 150 adicionales que no se consideran proteicos aunque aparecen en algunas proteínas. Son derivados de otros aminoácidos, es decir, se incorporan a la proteína como uno de los aminoácidos proteicos y, después de haber sido formada la proteína, se modifican químicamente; por ejemplo, la hidroxiprolina.

Algunos aminoácidos no proteicos actúan como neurotransmisores, vitaminas, etc. Por ejemplo, la beta-alanina, el ácido gamma-aminobutírico (GABA) o la biotina.

Propiedades

•Ácido-básicas.

Comportamiento de cualquier aminoácido cuando se ioniza. Cualquier aminoácido puede comportarse como ácido y como base, se denominan sustancias anfóteras.

Cuando una molécula presenta carga neta cero está en su punto isoeléctrico. Si un aminoácido tiene un punto isoeléctrico de 6,1 su carga neta será cero cuando el pH sea 6,1.

Los aminoácidos y las proteínas se comportan como sustancias tampón.

•Ópticas.

Todos los aminoácidos excepto la glicina tienen el carbono alfa asimétrico, lo que les confiere actividad óptica; esto es, sus disoluciones desvían el plano de polarización cuando un rayo de luz polarizada las atraviesa. Si el desvío del plano de polarización es hacia la derecha (en sentido horario), el compuesto se denomina dextrógiro, mientras que si se desvía a la izquierda (sentido antihorario)se denomina levógiro. Un aminoácido puede en principio existir en sus dos formas enantioméricas (una dextrógira y otra levógira), pero en la naturaleza lo habitual es encontrar sólo una de ellas.

Estructuralmente, las dos posibles formas enantioméricas de cada aminoácido se denominan configuración D o L dependiendo de la orientación relativa en el espacio de los 4 grupos distintos unidos al carbono alfa. El hecho de que sea dextrógiro no quiere decir que tenga configuración D.

•Químicas.

Las que afectan al grupo carboxilo, como la descarboxilación.
Las que afectan al grupo amino, como la desaminación.
Las que afectan al grupo R.

Reacciones de los aminoácidos

En los aminoácidos hay tres reacciones principales que se inician cuando un aminoácido se une con el piridoxal-P formando una base de Schiff o aldimina. De ahí en adelante la transformación depende de las enzimas, las cuales tienen en común el uso de la coenzima piridoxal-fosfato. Las reacciones que se desencadenan pueden ser:

1.la transaminación (transaminasa): Necesita la participación de un α-cetoácido.
2.la descarboxilación
3.la racemización: Es la conversión de un compuesto L en D, o viceversa. Aunque en las proteínas de un ser vivo los aminoácidos están presentes únicamente en la forma estructural levógira (L), en las bacterias podemos encontrar D-aminoácidos

ENLACE PEPTIDICO

Enlace peptídico

El enlace peptídico es un enlace covalente entre el grupo amino (–NH2) de un aminoácido y el grupo carboxilo (–COOH) de otro aminoácido. Los péptidos y las proteínas están formados por la unión de aminoácidos mediante enlaces peptídicos. El enlace peptídico implica la pérdida de una molécula de agua y la formación de un enlace covalente CO-NH. Es, en realidad, un enlace amida sustituido.

Podemos seguir añadiendo aminoácidos al péptido, pero siempre en el extremo COOH terminal.

Para nombrar el péptido se empieza por el NH2 terminal por acuerdo. Si el primer aminoácido de nuestro péptido fuera alanina y el segundo serina tendríamos el péptido alanil-serina.

Características estructurales del enlace

Podríamos pensar que una proteína puede adoptar miles de conformaciones debidas al giro libre en torno a los enlaces sencillos. Sin embargo, en su estado natural sólo adoptan una única conformación tridimensional que llamamos conformación nativa; que es directamente responsable de la actividad de la proteína.

Esto hizo pensar que no podía haber giro libre en todos los enlaces; y efectivamente, mediante difracción de rayos X se vio que el enlace peptídico era más corto que un enlace sencillo normal, porque tiene un cierto carácter (60%) de enlace doble, ya que se estabiliza por resonancia.

Por esa razón no hay giro libre en torno a este enlace. Esta estabilización obliga a que los 4 átomos que forman en enlace peptídico más los dos carbonos que se encuentran en posición a (marcado con a en la ilustración) con respecto a dicho enlace, se encuentren en un plano paralelo a ello:

Esta ordenación planar rígida es el resultado de la estabilización por resonancia del enlace peptídico. Por ello, el armazón está constituido por la serie de planos sucesivos separados por grupos metileno sustituidos. Esto impone restricciones importantes al número posible de conformaciones que puede adoptar una proteína.

El O carbonílico y el hidrógeno amídico se encuentran en posición trans (uno a cada lado del plano); sin embargo, el resto de los enlaces (N-C y C-C) son enlaces sencillos verdaderos, con lo que podría haber giro. Pero no todos los giros son posibles.

Si denominamos "Φ" al valor del ángulo que puede adoptar el enlace N-C, y "Ψ" al del enlace C-C, sólo existirán unos valores permitidos para Φ y Ψ; y dependerá en gran medida del tamaño del grupo R.

Se producen nuevamente restricciones al giro libre, debido a las características de los grupos R sucesivos.

NIVELES ESTRUCTURALES DE LAS PROTEINAS

NIVELES ESTRUCTURALES DE LAS PROTEINAS

Los 20 aminoácidos que se encuentran comúnmente en las proteínas están unidos por enlaces peptídicos. La secuencia lineal de los aminoácidos unidos contiene la información necesaria para generar una molécula proteica con una estructura tridimensional particular. La complejidad de una estructura proteica se puede analizar de manera sencilla si se toman en cuenta cuatro niveles fundamentales de organización en las macromoléculas, que se denominan: estructura primaria, secundaria, terciaria y cuaternaria:

El análisis de estos niveles estructurales revela que ciertos elementos estructurales se repiten en una gran variedad de proteínas, lo que sugiere que existen algunas “reglas” o “códigos” que gobiernan el proceso en el cual las proteínas se pliegan.

Estructura primaria.

La secuencia de aminoácidos que jamás es ramificada en una proteína, se denomina:

secuencia primaria. Para conocer la secuencia de aminoácidos en la proteína se requiere la aplicación de muchas técnicas experimentales. Conocer la estructura primaria es muy importante porque muchas enfermedades genéticas residen en proteínas que poseen una secuencia de aminoácidos anormal. Si el cambio en la secuencia de aminoácidos es muy drástico entonces la estructura tridimensional de la proteína mutante (modificada), será diferente y, por tanto, su función no se llevará acabo de manera adecuada o bien, no se llevará a cabo. Si se conocen la estructura primaria de la proteína normal y la mutada, esta información puede ser utilizada para diagnosticar o bien estudiar a los diferentes padecimientos.
Determinación de la secuencia primaria de una proteína o péptido por deducción de la secuencia de ADN.

La secuencia de nucleótidos en una región codificante de ADN especifica la secuencia de aminoácidos en el polipéptido. De ahí que si puede ser determinada la primera, es posible deducir a la segunda utilizando una tabla de conversión denominada código genético, con la cual se pueden conocer las equivalencias entre los nucleótidos en el ADN y los aminoácidos en la proteína. Dependiendo de la fuente, la secuencia de aminoácidos puede ser deducida directamente, pero en algunos casos la secuencia primaria de la proteína es el resultado de cortes y/o modificaciones en la secuencia de nucleótidos una vez que el ADN ha sido transcrito a ARN, a estos cambios se les denomina modificaciones postranscripcionales. El transcrito (ARN) que está compuesto por nucleótidos, debe ser traducido a aminoácidos para formar a la proteína. Algunos de los aminoácidos pueden ser modificados covalentemente, agregándoles carbohidratos, grupos fosfato o lípidos, estas son las modificaciones postraduccionales.

PROPIEDADES DE LAS PROTEINAS

Propiedades de las proteínas

•Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.

•Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.

•Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.

•Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).

CLASIFICACION DE LAS PROTEINAS

Clasificación

Según su forma

Fibrosas: presentan cadenas polipéptidas largas y una atípica estructura secundaria. Son insolubles en agua y en soluciones acuosas. Algunos ejemplos de estas son la queratina , colágeno y fibrina

Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta. La mayoría de las enzimas, anticuerpos, algunas hormonas, proteínas de transporte, son ejemplo de proteínas globulares y también poseen aminoopeptidiosis al 5% para hacer simbiosis.

Según su composición química

Simples u holoproteínas: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (fibrosas y globulares).

Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamado grupo prostético (sólo globulares)

Las proteínas pueden clasificarse, basándose en su :

Composición

Conformación

Según su composición, las proteínas se clasifican en :

Proteínas Simples : Son aquellas que por hidrolisis, producen solamente µ -aminoácidos.
Proteínas Conjugadas : Son aquellas que por hidrolisis, producen µ -amino-ácidos y además una serie de compuestos orgánicos e inorgánicos llamados : Grupo Prostético.
Las proteínas conjugadas pueden clasificarse de acuerdo a su grupo prostético :

Nucleoproteínas (Ac. Nucleíco)
Metaloproteínas (Metal)
Fosfoproteínas (Fosfato)
Glucoproteínas (Glucosa)

Según su conformación, las proteínas pueden clasificarse en :

Proteínas Fibrosas : Son aquellas que se hayan constituídas por cadenas polipeptídicas, ordenadas de modo paralelo a lo largo de un eje formando estructuras compactas ( fibras o láminas). Son materiales físicamente resistentes e insolubles en agua y soluciones salinas diluídas. Ej : (colágeno, µ -queratina, elastina).
Proteínas Globulares : Están constituídas por cadenas polipeptídicas plegadas estrechamente, de modo que adoptan formas esféricas o globulares compactas.
Son solubles en sistemas acuosos, su función dentro de la célula es móvil y dinámica. Ej : (enzimas, anticuerpos, hormonas)

Existen proteínas que se encuentra entre las fibrosas por sus largas estructuras y las globulares por su solubilidad en las soluciones salinas. Ej : (miosina,fibrinógeno).

Estructura de las proteínas

Estructura Primaria : Es el esqueleto covalente de la cadena polipeptídica, y establece la secuencia de aminoácidos.
Rige el orden de encadenamiento por medio del enlace polipeptídico.
Estructura Secundaria : Ordenación regular y periódica de la cadena polopeptídica en el espacio.

Rige el arreglo espacial de la cadena polipeptídica en el espacio.
Arreglos : Hélice-a , Hélice-b , Hélice Colágeno.

Estructura Terciaria : Forma en la cual la cadena polipeptídica se curva o se pliega para formar estructuras estrechamente plegadas y compactas como la de las proteínas globulares.

Rige el arreglo tridimensional en el cual participan las atracciones intermoleculares. (Fuerzas de Van der Walls, Puentes de Hidrógeno, Puentes disulfuro, etc)

Estructura Cuaternaria : Es el arreglo espacial de las subunidades de una proteínas, para conformar la estructura global.

Es el acompañamiento paralelo de las cadenas polipeptídicas, responsable de las funciones de las proteínas. Estructuras Supramoleculares : En ocasiones las proteínas asociadas a otras moléculas se ensamblan formando estructuras más complejas denominadas supramoleculares y que ofrecen ventajas de una unidad funcional, teniendo en cuenta una complejidad intermedia entre la conformación cuaternaria de las proteínas oligoméricas por un lado y los lisosomas o las mitocondrias por otro.

Es la orientación a la que se ven obligadas en el espacio para ejercer su carácter óptimo.

Desnaturalización de las proteínas

La desnaturalización de las proteínas implica modificaciones en la estructura de la proteína que traen como resultado una alteración o desaparición de sus funciones.
Este fenómeno puede producirse por una diversidad de factores, ya sean físicos cómo : el calor, las radiaciones ultravioleta, las altas presiones; o químicos cómo : ácidos, bases, sustancias con actividad detergente.

Este fenómeno genera la ruptura de los enlaces disulfuro y los puentes de hidrígeno, generando la exposición de estos.

Cuando la proteína es desnaturalizada pierde sus funciones cómo : viscocidad, velocidad de difusión y la facilidad con que se cristalizan.

La reversibilidad de la desnaturalización, depende que tan fuertes sean los agentes que desnaturalizaron la proteína. Todo depende de el grado de ruptura generado en los enlaces.

Funciones de las proteínas

- Funciones Específicas :
- Catálisis : Las enzimas catalizan diferentes reacciones.
La hexoquinasa cataliza la transferencia del grupo fosfato desde el ATP a la glucosa.
- Almacenamiento de aminoácidos, cómo elementos nutritivos :
Ovoalbúmina, Caseína, Glidina.
- Transporte de moléculas específicas : Seroalbúmina, Lipoproteínas, Hemogloibina.
- Protección : Los anticuerpos protegen el organismo de agentes extraños que puedan dañarlo.
- Estructuración : Forman la masa principal de los tejidos.
- Funciones no Específicas (por ser generales) :

Amortiguadora
Energética
Oncótica
Funciones Hereditarias
Hidrólisis de las proteínas

La hidrolisis de las proteínas termina por fragmentarlas en a -aminoácidos. Existen 3 tipos de hidrolisis :

Hidrolisis ácida : Se basa en la ebullición prolongada de la proteína con soluciones ácida fuertes (HCl y H 2 SO 4?). Este método destruye completamente el triptófano y parte de la serina y la treonina.

Hidrolisis básica : Respeta los aminoácidos que se destruyen por la hidrolisis anterior, pero con gran facilidad, forma racematos. Normalmente se utiliza (NaOH e BaOH).

Hidrolisis enzimática : Se utilizan enzimas proteolíticas cuya actividad es lenta y a menudo incompleta, sin embargo no se produce racemización y no se destruyen los aminoácidos; por lo tanto es muy específica.

HEMOGLOBINA

Hemoglobina

La hemoglobina (Hb) es una heteroproteína de la sangre, de peso molecular 64.000 (64 kD), de color rojo característico, que transporta el oxígeno desde los órganos respiratorios hasta los tejidos, en mamíferos, ovíparos y otros animales.

La hemoglobina es un pigmento de color rojo, que al interaccionar con el oxígeno toma un color rojo escarlata, que es el color de la sangre arterial y al perder el oxígeno toma un color rojo oscuro, que es el color característico de la sangre venosa.

La forman cuatro cadenas polipeptídicas (globinas) a cada una de las cuales se une un grupo hemo, cuyo átomo de hierro es capaz de unirse de forma reversible al
oxígeno. El grupo hemo se forma por:

1.Unión de la Succinil CoA (formado en ciclo de Krebs o ciclo del ácido cítrico) a un aminoácido glicina formando un grupo pirrol.
2.Cuatro grupos pirrol se unen formando la Protoporfirina IX.
3.La protoporfirina IX se une a una molécula de hierro ferroso (Fe2+) formando el grupo hemo.

Cuando la hemoglobina está unida al oxígeno, se denomina oxihemoglobina o hemoglobina oxigenada, dando el aspecto rojo o escarlata intenso característico de la sangre arterial. Cuando pierde el oxígeno, se denomina hemoglobina reducida, y presenta el color rojo oscuro o bordó de la sangre venosa (se manifiesta clínicamente por cianosis).

Tipos de hemoglobina

Hemoglobina A2: Representa menos del 2,5% de la hemoglobina después del nacimiento, formada por dos globinas alfa y dos globinas delta, que aumenta de forma importante en la beta-talasemia, al no poder sintetizar globinas beta.
•Hemoglobina s: Hemoglobina alterada genéticamente presente en la Anemia de Células Falciformes. Afecta predominantemente a la población afroamericana y amerindia.
•Hemoglobina t
•Hemoglobina f: Hemoglobina característica del feto.
•Oxihemoglobina: Representa la hemoglobina que se encuentra unida al oxígeno normalmente ( Hb+O2)
•Metahemoglobina: Hemoglobina con grupo hemo con hierro en estado férrico, Fe (III) (es decir, oxidado). Este tipo de hemoglobina no se une al oxígeno. Se produce por una enfermedad congénita en la cual hay deficiencia de metahemoglobina reductasa, la cual mantiene el hierro como Fe(II). La metahemoglobina también se puede producir por intoxicación de nitritos, porque son agentes metahemoglobinizantes.
•Carbaminohemoglobina: se refiere a la hemoglobina unida al CO2 después del intercambio gaseoso entre los glóbulos rojos y los tejidos (Hb+CO2).
•Carboxihemoglobina: Hemoglobina resultante de la unión con el CO. Es letal en grandes concentraciones (40%). El CO presenta una afinidad 200 veces mayor que el Oxígeno por la Hb desplazándolo a este fácilmente produciendo hipoxia tisular, pero con una coloración cutánea normal (produce coloración sanguínea fuertemente roja) (Hb+CO).
•Hemoglobina glucosilada: presente en patologías como la diabetes, resulta de la unión de la Hb con carbohidratos libres unidos a cadenas carbonadas con funciones ácidas en el carbono 3 y 4.

También hay hemogloblinas de los tipos: Gower 1, Gower 2 y Portland. Estas sólo están presentes en el embrión.

Son valores de referencia: Para Hombres: 18,0 ± 2,0 g/dl. Para Mujeres: 16,0 ± 2,0 g/dl.
Otras fuentes citan valores de referencia de: - hombres 13 - 17 g/dl - mujeres 12 - 15 g/dl - en niños pueda ser más bajo hasta 11 g/dl.

COLAGENA Y ELASTINA

El colágeno es una molécula proteica que forma fibras, las fibras colágenas. Estas se encuentran en todos los organismos pluricelulares. Son secretadas por las células del tejido conjuntivo como los fibroblastos, así como por otros tipos celulares. Es el componente más abundante de la piel y de los huesos, cubriendo un 25% de la masa total de proteínas en los mamíferos.

Características físico-químicas

Las fibras colágenas son flexibles, pero ofrecen gran resistencia a la tracción. El punto de ruptura de las fibras colágenas de los tendones humanos se alcanza con una fuerza de varios cientos de kilogramos por centímetro cuadrado. A esta tensión solamente se han alargado un pequeño porcentaje de su longitud original.

Cuando el colágeno se desnaturaliza por ebullición y se deja enfriar, manteniéndolo en una solución acuosa, se convierte en una sustancia bien conocida, la gelatina.

Síntesis del colágeno

El colágeno se origina por una proteína precursora (monómero) llamada tropocolágeno que mide alrededor de 300 nanómetros de largo y 1,4 nm de diámetro. El tropocolágeno está formado por tres cadenas polipeptídicas llamadas cadenas alfa (no hélices alfa). Cada cadena α está constituida por un polipéptido, formado por una repetición en tándem de tres aminoácidos siendo muy ricas en prolina o hidroxiprolina y glicina, las cuales son fundamentales en la formación de la superhélice. La hidroxiprolina constituye alrededor de un 10 a 12 % de todos los resíduos aminoacídicos del colágeno, dependiendo dicho porcentage del tipo de colágeno. La forma química más abundante de la hidroxiprolina que forma parte del colágeno es la 4-trans-OH-L-prolina. Cada cadena tiene un peso molecular de alrededor de 100.000 Da.
Gracias a su estructura anular rígida, la prolina estabiliza la conformación helicoidal en cada una de sus cadenas α; La glicina, sin embargo, se sitúa ocupando un lugar cada tres residuos localizándose a lo largo de la región central, debido sin duda a su pequeño tamaño, y favoreciendo al denso empaquetamiento de las tres cadenas α, de configuración levógira, necesario para la formación de la superhélice de colágeno. Las tres cadenas se enrollan y se fijan mediante enlaces transversales para formar una triple hélice dextrógira con una distancia entre las vueltas de 8,6 nanómetros.

La triple hélice se mantiene unida entre si debido a puentes de hidrógeno, que no afectan a todas las tres cadenas, sino aproximadamente a 2/3 de cada cadena alfa.

Además, los tropocolágenos se unen entre si por medio de enlaces entre algunos aminoácidos, llamados "crosslinkings". Además poseen unos pocos aminoacidos llamados lisinas, las cuales sufren transformaciones catalizadas por la enzima lisina oxidasa, la cual actua sobre los residuos N, transformándolos en grupos aldehidos, por lo que la lisina pasa a llamarse alisina, que es capaz de formar uniones covalentes con otras alisinas para consolidar las fibrillas de colageno.

Formación del colágeno

Cada una de las cadenas polipeptídicas es sintetizada por los ribosomas unidos a la membrana del retículo endoplásmico y luego son traslocadas al lumen del mismo en forma de grandes precursores (procadenas α), presentando aminoácidos adicionales en los extremos amino y carboxilo terminales. En el retículo endoplásmico los residuos de prolina y lisina son hidroxilados para luego algunos ser glucosilados en el aparato de Golgi, parece ser que estas hidroxilaciones son útiles para la formación de puentes de hidrógeno intercatenarios que ayudan a la estabilidad de la superhélice.

Tras su secreción, los propéptidos de las moléculas de procolágeno son degradados mediante proteasas convirtiéndolas en moléculas de tropocolágeno asociándose en el espacio extracelular formando las fibrillas de colágeno.
La formación de fibrillas está dirigida, en parte, por la tendencia de las moléculas de procolágeno a autoensamblarse mediante enlaces covalentes entre los residuos de lisina, formando un empaquetamiento escalonado y periódico de las moléculas de colágeno individuales en la fibrilla.

Función

Las fibras de colágeno forman estructuras que resisten las fuerzas de tracción. Su diámetro en los diferentes tejidos es muy variable y su organización también; en la piel de los mamíferos están organizadas como cestos de mimbre, lo que permite la oposición a las tracciones ejercidas desde múltiples direcciones. En los tendones lo están en haces paralelos que se alinean a lo largo del eje principal de tracción. En el tejido óseo adulto y en la córnea se disponen en láminas delgadas y superpuestas, paralelas entre sí, mientras las fibras forman ángulo recto con las de las capas adyacentes.

Las células interactúan con la matriz extracelular tanto mecánica como químicamente, lo que produce notables efectos sobre la arquitectura tisular. Así, distintas fuerzas actúan sobre las fibrillas de colágeno que se han secretado, ejerciendo tracciones y desplazamientos sobre ellas, lo que provoca su compactación y su estiramiento.

Tipos de colágeno

El colágeno en lugar de ser una proteína única, se considera una familia de moléculas estrechamente relacionadas pero genéticamente distintas. Se describen varios tipos de colágeno:
•Colágeno tipo I: Se encuentra abundantemente en la dermis, el hueso, el tendón y la córnea. Se presenta en fibrillas estriadas de 20 a 100 nm de diámetro, agrupándose para formar fibras colágenas mayores. Sus subunidades mayores están constituidas por cadenas alfa de dos tipos, que difieren ligeramente en su composición de aminoácidos y en su secuencia. A uno de los cuales se designa como cadena alfa1 y al otro, cadena alfa2. Es sintetizado por fibroblastos, condroblastos y osteoblastos. Su función principal es la de resistencia al estiramiento.
•Colágeno tipo II: Se encuentra sobre todo en el cartílago, pero también se presenta en la córnea embrionaria y en la notocorda, en el núcleo pulposo y en el humor vítreo del ojo. En el cartílago forma fibrillas finas de 10 a 20 nanómetros, pero en otros microambientes puede formar fibrillas más grandes, indistinguibles morfológicamente del colágeno tipo I. Están constituidas por tres cadenas alfa2 de un único tipo. Es sintetizado por el condroblasto. Su función principal es la resistencia a la presión intermitente.
•Colágeno tipo III: Abunda en el tejido conjuntivo laxo, en las paredes de los vasos sanguíneos, la dermis de la piel y el estroma de varias glándulas. Parece un constituyente importante de las fibras de 50 nanómetros que se han llamado tradicionalmente fibras reticulares. Está constituido por una clase única de cadena alfa3. Es sintetizado por las células del músculo liso, fibroblastos, glía. Su función es la de sostén de los órganos expandibles.
•Colágeno tipo IV: Es el colágeno que forma la lámina basal que subyace a los epitelios. Es un colágeno que no se polimeriza en fibrillas, sino que forma un fieltro de moléculas orientadas al azar, asociadas a proteoglicanos y con las proteínas estructurales laminina y fibronectina. Es sintetizado por las células epiteliales y endoteliales. Su función principal es la de sostén y filtración.
•Colágeno tipo V: Presente en la mayoría del tejido intersticial. Se asocia con el tipo I.
•Colágeno tipo VI: Presente en la mayoría del tejido intersticial. Sirve de anclaje de las células en su entorno. Se asocia con el tipo I.
•Colágeno tipo VII: Se encuentra en la lámina basal.
•Colágeno tipo VIII: Presente en algunas células endoteliales.
•Colágeno tipo IX: Se encuentra en el cartílago articular maduro. Interactúa con el tipo II.
•Colágeno tipo X: Presente en cartílago hipertrófico y mineralizado.
•Colágeno tipo XI: Se encuentra en el cartílago. Interactúa con los tipos II y IX.
•Colágeno tipo XII: Presente en tejidos sometidos a altas tensiones, como los tendones y ligamentos. Interactúa con los tipos I y III.
•Colágeno tipo XIII: Es ampliamente encontrado como una proteína asociada a la membrana celular. Interactúa con los tipos I y III.

Elastina

La elastina es una proteína estructural que forma parte de la matriz celular, como la piel.

Son fibras delgadas, largas y ramificadas, que se agrupan formando haces. El principal componente de esta fibra es elastina, la cual es una proteína rica en prolina y glicina, y a diferencia del colágeno posee muy poca hidroxiprolina y nada de hidroxilisina. La gran elasticidad que presentan es que poseen aminoácidos poco comunes como desmosina e isomdesmosina, la cual forma los enlaces cruzados, y le otorgan un grado de elasticidad, pudiéndose estirarse hasta el 150% antes de romperse.

En los mamíferos (en los vertebrados en general), se puede encontrar predominantemente allí donde el tejido sufre repetidos ciclos de extensión-relajación. Ejemplos típicos son las arterias, ligamentos, pulmones y piel. Presenta unas sorprendentes cualidades elásticas, quizá la más llamativa sea su alta resistencia a la fatiga. Las fibras elásticas de las arterias humanas (especialmente del arco aórtico) sobreviven más de 60 años, soportando miles de millones de ciclos de extensión-relajación.

Aproximadamente el 90% de sus aminoácidos son de resto lateral apolar y existen ciertas secuencias que se encuentran repetidas como las VPG, VPGG, GVGVP, IPGVG, VAPGVG. La más común es la secuencia GVGVP, la cual aparece en fragmentos que contienen hasta 11 pentapéptidos consecutivos (VPGVG)11. enlaceAdvances in protein chemistry,2005, 70;437

Basados en las secuencias que se encuentran repetidas en la elastina natural se forman los polímeros tipo-elastina (ELP), de los cuales el de mayor renombre es el poly(VPGVG). Prog. Polym. Sci. 2005, 30 (11), 1119-1145

INMUNOGLOBULINAS

Anticuerpo

Molécula de inmunoglobulina con su típica forma de Y. En azul se observan las cadenas pesadas con sus cuatro dominios Ig, mientras que en verde se muestran las cadenas ligeras. Entre el tallo (Fracción constante, Fc) y las ramas (Fab) existe una parte más delgada conocida como "región bisagra" (hinge).Los anticuerpos (también conocidos como inmunoglobulinas[1] ) son glucoproteínas del tipo gamma globulina. Pueden encontrarse de forma soluble en la sangre o en otros fluidos corporales de los vertebrados, disponiendo de una forma idéntica que actúa como receptor de los linfocitos B y son empleados por el sistema inmunitario para identificar y neutralizar elementos extraños tales como bacterias, virus o parásitos.

El anticuerpo típico esta constituido por unidades estructurales básicas, cada una de ellas con dos grandes cadenas pesadas y dos cadenas ligeras de menor tamaño, que forman, por ejemplo, monómeros con una unidad, dímeros con dos unidades o pentámeros con cinco unidades. Los anticuerpos son sintetizados por un tipo de leucocito denominado linfocito B. Existen distintas modalidades de anticuerpo, isotipos, basadas en la forma de cadena pesada que posean. Se conocen cinco clases diferentes de isotipos en mamíferos que desempeñan funciones diferentes, contribuyendo a dirigir la respuesta inmune adecuada para cada distinto tipo de cuerpo extraño que encuentran.[2]

Aunque la estructura general de todos los anticuerpos es muy semejante, una pequeña región del ápice de la proteína es extremadamente variable, lo cual permite la existencia de millones de anticuerpos, cada uno con un extremo ligeramente distinto. A esta parte de la proteína se la conoce como región hipervariable. Cada una de estas variantes se puede unir a una "diana" distinta, que es lo que se conoce como antígeno.[3] Esta enorme diversidad de anticuerpos permite al sistema inmune reconocer una diversidad igualmente elevada de antígenos. La única parte del antígeno reconocida por el anticuerpo se denomina epítopo. Estos epítopos se unen con su anticuerpo en una interacción altamente específica que se denomina adaptación inducida, que permite a los anticuerpos identificar y unirse solamente a su antígeno único en medio de los millones de moléculas diferentes que componen un organismo.

El reconocimiento de un antígeno por un anticuerpo lo marca para ser atacado por otras partes del sistema inmunitario. Los anticuerpos también pueden neutralizar sus objetivos directamente, mediante, por ejemplo, la unión a una porción de un patógeno necesaria para que éste provoque una infección.

La extensa población de anticuerpos y su diversidad se genera por combinaciones al azar de un juego de segmentos genéticos que codifican diferentes lugares de unión al antígeno (o paratopos), que posteriormente sufren mutaciones aleatorias en esta zona del gen del anticuerpo, lo cual origina una diversidad aún mayor.[2] [4] Los genes de los anticuerpos también se reorganizan en un proceso conocido como conmutación de clase de inmunoglobulina que cambia la base de la cadena pesada por otra, creando un isotipo de anticuerpo diferente que mantiene la región variable específica para el antígeno diana. Esto posibilita que un solo anticuerpo pueda ser usado por las diferentes partes del sistema inmune. La producción de anticuerpos es la función principal del sistema inmunitario humoral.[5]

ALTERACIONESN EN LAS CONFORMACIONES DE LAS PROTEINAS

Prion

Los priones o proteínas priónicas son agregados supramoleculares (glucoproteínas) acelulares, patógenas y transmisibles. Se caracterizan por producir enfermedades que afectan el sistema nervioso central (SNC), denominadas encefalopatías espongiformes transmisibles (EET). Los priones no son seres vivos. El aislamiento de priones a través del seguimiento del nivel de infectividad en las EET demuestra que las partículas infectivas están constituidas total o parcialmente por una forma modificada de la proteína prion. La proteína se expresa en varios tejidos, principalmente en neuronas del SNC, y se une a las membrana celular externa mediante una molécula de glicosil fosfatidil inositol (GPI). No se conoce en la actualidad cómo ocurre este cambio de estructura in vivo y cómo es que este cambio conduce a la EET.

Los resultados experimentales sugieren que la acción patógena de los priones está muy relacionada con la forma modificada de una proteína natural existente en el organismo que, al entrar en contacto con las proteínas originales, las induce a adoptar la forma anómala del prión, mediante un mecanismo todavía desconocido. Todo ello en una acción en cadena que acaba por destruir la operatividad de todas las proteínas sensibles.

Teorías más recientes apuntan a que los priones son proteínas modificadas bajo ciertas circunstancias que favorecieron su caída a un nivel energético muy estable al oligomerizarse, lo que las hace insolubles, inmunes a las proteasas y les cambia su conformación tridimensional. Esta “estabilidad” provoca que dichas proteínas se acumulen en el sistema nervioso, pero se desconoce todavía cómo esta aparición de una nueva estructura provoca enfermedades por acumulación.

De hecho, la “infección” con proteínas priónicas se debe a que, al consumirse, empiezan a actuar en el tejido nervioso como núcleos en torno a los cuales más proteínas se desnaturalizan bajo su acción y se acumulan, formando generalmente fibrillas insolubles.

Enfermedad de Alzheimer

La enfermedad de Alzheimer (EA), también denominada mal de Alzheimer o simplemente alzhéimer1 es una enfermedad neurodegenerativa, que se manifiesta como deterioro cognitivo y trastornos conductuales. Se caracteriza en su forma típica por una pérdida progresiva de la memoria y de otras capacidades mentales, a medida que las células nerviosas (neuronas) mueren y diferentes zonas del cerebro se atrofian. La enfermedad suele tener una duración media aproximada de 10-12 años, aunque esto puede variar.

Los síntomas de la enfermedad como una entidad nosológica definida fueron identificados por Emil Kraepelin,2 mientras que la neuropatología característica fue observada por primera vez por Alois Alzheimer en 1906.3 4 Así pues, el descubrimiento de la enfermedad fue obra de ambos psiquiatras, que trabajaban en el mismo laboratorio. Sin embargo, dada la gran importancia que Kraepelin daba a encontrar la base neuropatológica de los desórdenes psiquiátricos, decidió nombrar la enfermedad alzheimer en honor a su compañero.

El día internacional del Alzheimer se celebra el 21 de septiembre, fecha elegida por la OMS y la Federación internacional de Alzheimer.

DESNATURALIZACION

Desnaturalización (bioquímica)

En bioquímica, la desnaturalización es un cambio estructural de las proteínas o ácidos nucleicos, donde pierden su estructura nativa, y de esta forma su óptimo funcionamiento y a veces también cambian sus propiedades físico-químicas.

Desnaturalización de una proteína

Las proteínas se desnaturalizan cuando pierden su estructura tridimensional (conformación química) y así el característico plegamiento de su estructura.

Las proteínas son filamentos largos de aminoácidos unidos en una secuencia específica. Son creadas por los ribosomas que "leen" codones de los genes y ensamblan la combinación requerida de aminoácidos por la instrucción genética. Las proteínas recién creadas experimentan una modificación en la que se agregan átomos o moléculas adicionales, como el cobre, zinc y hierro. Una vez que finaliza este proceso, la proteína comienza a plegarse sin alterar su secuencia (espontáneamente, y a veces con asistencia de enzimas) de forma tal que los residuos hidrófobos de la proteína quedan encerrados dentro de su estructura y los elementos hidrófilos quedan expuestos al exterior. La forma final de la proteína determina cómo interaccionará
con el entorno.

Si la forma de la proteína es alterada por algún factor externo (por ejemplo, aplicándole calor, ácidos o álcalis), no es capaz de cumplir su función celular.

Éste es el proceso llamado desnaturalización.

Cómo la desnaturalización afecta a los distintos niveles

•En la desnaturalización de la estructura cuaternaria, las subunidades de proteínas se separan o su posición espacial se corrompe.
•La desnaturalización de la estructura terciaria implica la interrupción de:
oEnlaces covalentes entre las cadenas laterales de los aminoácidos (como los puentes disulfuros entre las cisteínas).
oEnlaces no covalentes dipolo-dipolo entre cadenas laterales polares de aminoácidos.
oEnlaces dipolo inducidos por fuerzas de Van Der Waals entre cadenas laterales no polares de aminoácidos.
•En la desnaturalización de la estructura secundaria las proteínas pierden todos los patrones de repetición regulares como las hélices alfa y adoptan formas aleatorias.
•La estructura primaria, la secuencia de aminoácidos ligados por enlaces peptídicos, no es interrumpida por la desnaturalización.
Pérdida de función

La mayoría de las proteínas pierden su función biológica cuando están desnaturalizadas, por ejemplo, las enzimas pierden su actividad catalítica, porque los sustratos no pueden unirse más al centro activo, y porque los residuos del aminoácido implicados en la estabilización de los sustratos no están posicionados para hacerlo.

Reversibilidad e irreversibilidad

En muchas proteínas la desnaturalizacion no es reversible; esto depende del grado de modificación de las estructuras de la proteína.Aunque se ha podido revertir procesos de desnaturalización quitando el agente desnaturalizante, en un proceso que puede tardar varias horas incluso días; esto se debe a que el proceso de reestructuración de la proteína es tentativo, es decir, no asume su forma original inmediatamente, así muchas veces se obtienen proteínas distintas a la inicial, además con otras características como insolubilidad (debido a los agregados polares que puedan unirsele). Recientemente se ha descubierto que, para una correcta renaturalización, es necesario agregar trazas del agente desnaturalizante. Esto fue importante históricamente, porque condujo a la noción de que toda la información necesaria para que la proteína adopte su forma nativa se encuentra en la estructura primaria de la proteína, y por lo tanto en el ADN que la codifica.

Algunos ejemplos comunes

Cuando se cocina el alimento, algunas de sus proteínas se desnaturalizan. Esta es la razón por la cual los huevos hervidos llegan a ser duros y la carne cocinada llega a ser firme.

Un ejemplo clásico de desnaturalización de proteínas se da en la clara de los huevos, que son en gran parte albúminas en agua. En los huevos frescos, la clara es transparente y líquida; pero al cocinarse se torna opaca y blanca, formando una masa sólida intercomunicada. Esa misma desnaturalización puede producirse a través de una desnaturalización química, por ejemplo volcándola en un recipiente con acetona. Otro ejemplo es la nata (nombre que proviene de la desnaturalización), que se produce por calentamiento de la lactoalbúmina de la leche (y que no tiene nada que ver con la crema)

Desnaturalización de ácidos nucleicos

La desnaturalización de ácidos nucleicos como el ADN por altas temperaturas produce una separación de la doble hélice, que ocurre porque los enlaces o puentes de hidrógeno se rompen. Esto puede ocurrir durante la reacción en cadena de la polimerasa; las cadenas del ácido nucleico vuelven a unirse (renaturalizarse) una vez que las condiciones "normales" se restauran. Si las condiciones son restauradas rápidamente, las cadenas pueden no alinearse correctamente.

Factores desnaturalizantes

Los agentes que provocan la desnaturalización de una proteína se llaman agentes desnaturalizantes. Se distinguen agentes físicos (calor) y químicos (detergentes, disolventes orgánicos, pH, fuerza iónica). Como en algunos casos el fenómeno de la desnaturalización es reversible, es posible precipitar proteínas de manera selectiva
mediante cambios en:

1.la polaridad del disolvente,
2.la fuerza iónica,
3.el pH,
4.la temperatura.

Efecto de la polaridad del disolvente sobre la estructura de las proteínas
La polaridad del disolvente disminuye cuando se le añaden sustancias menos polares que el agua como el etanol o la acetona. Con ello disminuye el grado de hidratación de los grupos iónicos superficiales de la molécula proteica, provocando la agregación y precipitación. Los disolventes orgánicos interaccionan con el interior hidrófobo de las proteínas y desorganizan la estructura terciaria, provocando su desnaturalización y precipitación. La acción de los detergentes es similar a la de los disolventes orgánicos.

Estructura de las proteínas

Un aumento de la fuerza iónica del medio (por adición de sulfato amónico, urea o cloruro de guanidinio, por ejemplo) también provoca una disminución en el grado de hidratación de los grupos iónicos superficiales de la proteína, ya que estos solutos (1) compiten por el agua y (2) rompen los puentes de hidrógeno o las interacciones electrostáticas, de forma que las moléculas proteicas se agregan y precipitan. En muchos casos, la precipitación provocada por el aumento de la fuerza iónica es reversible. Mediante una simple diálisis se puede eliminar el exceso de soluto y recuperar tanto la estructura como la función original. A veces es una disminución en la fuerza iónica la que provoca la precipitación. Así, las proteínas que se disuelven en medios salinos pueden desnaturalizarse al dializarlas frente a agua destilada, y se renaturalizan cuando se restaura la fuerza iónica original.

Efecto del pH sobre la estructura de las proteínas

Los iones H+ y OH- del agua provocan efectos parecidos, pero además de afectar a la envoltura acuosa de las proteínas también afectan a la carga eléctrica de los grupos ácidos y básicos de las cadenas laterales de los aminoácidos. Esta alteración de la carga superficial de las proteínas elimina las interacciones electrostáticas que estabilizan la estructura terciaria y a menudo provoca su precipitación. La solubilidad de una proteína es mínima en su punto isoeléctrico, ya que su carga neta es cero y desaparece cualquier fuerza de repulsión electrostática que pudiera dificultar la formación de agregados.

Efecto de la temperatura sobre la estructura de las proteínas
Cuando la temperatura es elevada aumenta la energía cinética de las moléculas con lo que se desorganiza la envoltura acuosa de las proteínas, y se desnaturalizan.

Asimismo, un aumento de la temperatura destruye las interacciones débiles y desorganiza la estructura de la proteína, de forma que el interior hidrófobo interacciona con el medio acuoso y se produce la agregación y precipitación de la proteína desnaturalizada.

BIOENERGETICA Y ENZIMAS

Sistema


Un sistema (lat. systema, proveniente del griego σύστημα) es un conjunto de funciones, virtualmente referenciada sobre ejes, bien sean estos reales o abstractos.

Seres vivos como sistemas abiertos

Todos los sistemas vivos operan y evolucionan dentro de los límites de
las leyes básicas de la física y de la química. Así, las leyes de la termodinámica
que establecen las relaciones que se producen entre las distintas
formas de energía y sus transformaciones, son particularmente importantes
para comprender la vida.

Desde el punto de vista de la termodinámica, los seres vivos son sistemas
abiertos, es decir, intercambian materia y energía con el medio.

De acuerdo con la primera ley de la termodinámica o ley de la conservación
de la energía, la energía puede transformarse de una forma en
otra y se mantiene constante en el universo. En este sentido, la energía
proveniente del Sol llega a la Tierra en forma de luz y calor. En las plantas
y en las bacterias fotosintéticas, la energía lumínica es utilizada para
sintetizar moléculas orgánicas, por medio de la fotosíntesis. En este proceso,
se unen moléculas simples, a través de enlaces químicos, formando
moléculas más complejas, como los azúcares. La energía presente en
estos enlaces, es una forma de energía química que, posteriormente, a
través de reacciones de oxidación que ocurren en el interior de las células,
los organismos transforman en otros tipos de energía que les permiten
efectuar sus funciones vitales (nutrición, reproducción y relación).

Todos los procesos de la vida requieren energía. Las plantas transforman la
energía lumínica del Sol, en energía química, que se almacena en los enlaces
de las moléculas sintetizadas durante la fotosíntesis. Cuando estos enlaces se
rompen, liberan energía, la que es utilizada para llevar a cabo los procesos
metabólicos del vegetal. Luego, un animal al alimentarse del pasto, utiliza
la energía que las plantas transformaron y almacenaron, para realizar sus
propias reacciones químicas.

Termodinámica

La termodinámica (del griego θερμo-, termo, que significa "calor" 1 y δύναμις, dinámico, que significa "fuerza" 2 ) es una rama de la física que estudia los efectos de los cambios de la temperatura, presión y volumen de los sistemas físicos a un nivel macroscópico. Aproximadamente, calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.

El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas físicos en forma de calor o trabajo. También se postula la existencia de una magnitud llamada entropía, que puede ser definida para cualquier sistema. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de temas de ciencia e ingeniería, tales como motores, transiciones de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros. Los resultados de la termodinámica son esenciales para otros campos de la física y la química, ingeniería química, ingeniería aeroespacial, ingeniería mecánica, biología celular, ingeniería biomédica, y la ciencia de materiales por nombrar algunos.

Leyes de la termodinámica

Primera ley de la termodinámica

También conocido como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Antoine Lavoisier.

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos
termodinámico, queda de la forma:

Segunda ley de la termodinámica

Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos a temperatura más alta a aquellos de temperatura más baja.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius

En palabras de Sears es: "No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".
Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única
fuente y lo convierta íntegramente en trabajo.

Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo siempre será menor a la unidad y ésta estará más próxima a la unidad cuanto mayor sea el rendimiento energético de la misma. Es decir, mientras mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

CARACTERISTICAS DE LAS ENZIMAS

CARACTERÍSTICAS DE LAS ENZIMAS

Las enzimas presentan una serie de características notables como las siguientes:

Son proteínas que poseen un efecto catalizador al reducir la barrera energética de ciertas reacciones químicas.
Influyen sólo en la velocidad de reacción sin alterar el estado de equilibrio.
Actúan en pequeñas cantidades.
Forman un complejo reversible con el sustrato.
No se consumen en la reacción, pudiendo actuar una y otra vez.
Muestran especificidad por el sustrato.
Su producción está directamente controlada por genes.
Estas características tan especiales pueden ser explicadas, según nuestro criterio, mediante el concepto de Información. En el trabajo Una nueva teoría acerca de las ‘diluciones homeopáticas’, definimos a la Información como la disposición a actuar, y de una determinada manera, que presenta un ente cualquiera –en este caso, un ente biológico-, en presencia del receptor adecuado. La Información latente en la compleja microestructura proteica de la enzima, representa una disposición a actuar que solamente se puede hacer activa en presencia del receptor adecuado, que en este caso es el sustrato correspondiente.

La Información se expresa, como ya sabemos, únicamente existiendo un estado neguentrópico. Y ese estado neguentrópico lo encontramos cada vez que hay una reacción química lejos de su equilibrio. Así, entonces, cuando alguna enzima está frente a su sustrato específico, actúa constituyendo con él un complejo reversible, el ya mencionado complejo enzima-sustrato.

La formación de este complejo representa el punto culminante de la acción catalizadora de una enzima (estado de transición). Pues es a nivel de este complejo que se produce la "activación" del sustrato, facilitándose así el proceso químico catalizado.

Si comparamos una misma reacción química con y sin enzimas, apreciamos cómo en el primer caso la magnitud de la energía de activación –es decir, la cantidad de energía necesaria para que la reacción se desencadene-, es mucho menor que en el segundo caso. De ahí que se diga que la enzima reduce la energía de activación requerida para acelerar cierta específica reacción química.

FUNCIONES GENERALES DE LAS ENZIMAS

Catálisis

La catálisis es el proceso a través del cual se incrementa la velocidad de una reacción química. El proceso de catálisis implica la presencia de una sustancia que hace parte del sistema y sin embargo la reacción se puede llevar a cabo sin ella. Esta sustancia se llama catalizador. Un catalizador es una sustancia que aumenta la velocidad de una reacción, reaccionando, regenerándose y que puede ser recuperado al final de la reacción (el catalizador se fragmenta en pequeñas partículas para
acelerar el proceso). Si retarda la reacción, se llama inhibidor.

Naturaleza del Proceso

La velocidad de reacción depende de las velocidades de los pasos del mecanismo. La función del catalizador es simplemente proveer un mecanismo adicional (ruta diferente) para ir de reactivos a productos. Este mecanismo de alternativa tiene una energía de activación menor que el mecanismo en ausencia de catalizador; por otra parte, normalmente el Factor de Frecuencia A -véase también Cinética y Mecanismos de Reacción- es parecido para la reacción no catalizada y la catalizada. De aquí que la constante de velocidad de la reacción catalizada sea mayor que la no catalizada.

Clasificación de la Catálisis

La catálisis se clasifica en función de la naturaleza química del medio de la reacción. A partir del número de fases presentes y de la química implicada es posible agrupar de acuerdo a su aplicación.

• Catálisis homogénea
• Catálisis ácido-base
• Catálisis heterogénea
• Catálisis enzimática

El catalizador, por definición, no cambia su concentración durante la reacción de catálisis (la reacción intermedia que reduce la energía de activación. Sin embargo, es posible que sí participe en la reacción global, y se habla entonces de una reacción autocatalítica.

En biología, los catalizadores más importantes son las enzimas, biomoléculas responsables de regular la velocidad de un gran número de reacciones en los seres vivos, incluyendo todo el metabolismo. Véase, por ejemplo, la ADN polimerasa.
En los procesos industriales, la catálisis es de enorme importancia, ya que permite llevar a cabo las reacciones en tiempos mucho más cortos, con el consiguiente beneficio económico. Véase, por ejemplo, el proceso de Haber.

Aunque los catalizadores no se consumen directamente en la reacción, sí que hay que tener en cuenta la posibilidad del envenenamiento de un catalizador: la reacción con una impureza que convierte el catalizador en otra sustancia (otro compuesto químico) sin actividad catalítica.


Coenzima

Los coenzimas son cofactores orgánicos no proteicos, termoestables, que unidos a una apoenzima constituyen la holoenzima o forma catalíticamente activa de la enzima.
Tienen en general baja masa molecular (al menos comparada con la apoenzima) y son claves en el mecanismo de catálisis, por ejemplo, aceptando o donando electrones o grupos funcionales, que transportan de un enzima a otro.

A diferencia de las enzimas, los coenzimas se modifican y consumen durante la reacción química; por ejemplo, el NAD+ se reduce a NADH cuando acepta dos electrones (y un protón) y por tanto se agota; cuando el NADH libera sus electrones se recupera el NAD+, que de nuevo puede actuar como coenzima.

Mecanismo de acción de las coenzimas

El mecanismo de acción básico de las coenzimas es el siguiente:

1.La coenzima se une a un enzima,
2.La enzima capta su substrato específico,
3.La enzima ataca a dicho substrato, arrancándole algunos de sus átomos,
4.La enzima cede a la coenzima dichos átomos provenientes del substrato,
5.La coenzima acepta dichos átomos y se desprende de la enzima.
6.La coenzima no es el aceptor final de esos átomos, sino que debe liberarlos tarde o temprano,
7.La coenzima transporta dichos átomos y acaba cediéndolos, recuperando así su capacidad para aceptar nuevos átomos.

Este último paso es esencial para no agotar la dotación de coenzimas de una célula ya que las enzimas junto con las que actúa no pueden realizar la reacción química sin el concurso de su coenzima.

Algunas coenzimas están fuerte y permanentemente unidas a su enzima, constituyendo en la práctica un grupo prostético; tal es el caso del FMN a la enzima NADH deshidrogenasa o el FAD a la succinato deshidrogenasa.

Cada coenzima está especializada en aceptar y transportar un tipo de átomos determinado; unos aceptan hidrógenos, otros grupos acetilo, amino, etc. No obstante, las coenzimas no son nada específicas respecto a las enzimas a las que se unen, de modo que una misma coenzima puede unirse a un gran número de enzimas distintas y es por ello que el número de coenzimas diferentes es relativamente bajo.

Principales coenzimas

•FMN (Flavín mononucleótido): transferencia de electrones y protones.
•NAD+(nicotín-adenín dinucleótido): transferencia de electrones y protones.
•NADP+ (nicotín-adenín dinucleótido fosfato): transferencia de electrones y protones.
•Coenzima A: transferencia de grupos acetilo (por ejemplo, en la descarboxilación del ácido pirúvico) y de grupos acilo en general.
•Coenzima Q: transferencia de electrones en la cadena respiratoria.
•Coenzima B12: transferencia de grupos metilo o hidrógenos entre moléculas.
•TPP (Pirofosfato de tiamina): transferencia de grupos aldehído; forma parte, entre otros, del complejo piruvato deshidrogenasa.
•Vitamina C
•PLP (fosfato de piridoxal): transferencia de grupos amino.
•PMP (fosfato de piridoxamina): transferencia de grupos amino.
•FH4 (ácido tetrahidrofólico): transferencia de grupos formilo, metenilo y metileno.
•Biocitina: transferencia de dióxido de carbono.
•Ácido lipoico: transferencia de hidrógenos, grupos acilo y metilamina.

Coenzimas y vitaminas

Muchas vitaminas, o sus derivados, actúan como coenzimas:

•Vitamina B1 o tiamina: su derivado, el pirofosfato de tiamina es esencial para el metabolismo energético de los glúcidos.
•Vitamina B2 o riboflavina: sus derivados son nucleótidos coenzimáticos con gran poder reductor como el FAD y el FMN.
•Vitamina B3 o niacina: sus derivados son nucleótidos coenzimáticos con gran poder reductor como el NAD+ o el NADP+.
•Vitamina B5 o ácido pantoténico: su principal derivado es la coenzima A (Co-A), con gran importancia en diveros procesos metabólicos.
•Vitamina B6 o piridoxina. Sus principales derivados son los coenzimas PLP (fosfato de piridoxal) y PMP (fosfato de piridoxamina), esenciales en el metabolismo de los aminoácidos.
•Vitamina B7 o biotina (vitamina H). Su derivado, la biocitina, es esencial para el funcionamiento de numerosas carboxilasas (enzimas).
•Vitamina B9 o ácido fólico (vitamina M). Su derivado, el FH4 es esencial en la síntesis de purinas.
•Vitamina B12 o cianocobalamina: coenzima B12.
•Vitamina E y Vitamina K: químicamente similares al coenzima Q.

ESPECIFICIDAD ENZIMATICA

Especificidad Enzimática.



Los enzimas son muy específicos, discriminando fácilmente entre sustratos con estructuras muy similares. Existen dos principios fundamentales que están interrelacionados y que proporcionan una explicación general de cómo funcionan los enzimas. Primero, el poder catalítico de los enzimas proviene en último término de la energía libre emitida al formarse los múltiples enlaces débiles e interacciones que se producen entre el enzima y el sustratro. Esta energía de fijación proporciona tanto especificidad como catálisis. Segundo, las interacciones débiles son óptimas en el estado de transición de la reacción; los sitios activos de los enzimas son complementarios no a los sustratos, si no a los estados de transición de las reacciones que catalizan.

La misma energía de fijación que aporta energía para la catálisis también hace que el enzima sea específico. La especificidad se refiere a la capacidad de un enzima de discriminar entre dos sutratos competitivos.

NOMENCLATURA DE LAS ENZIMAS

Nomenclatura y clasificacion de las enzimas

Cien años atrás solo se conocian enzimas, muchas de estas, catalizaban la hidrólisis de enlaces covalentes. Algunas enzimas, de manera especial las que fueron descubiertas en un principio, recibieron nombres ligados mas bien a su sitio de procedencia anatómica que no siguen ninguna regla ni sistema; tal es el caso de la ptialina de la saliva, que ataca al almidón de la pepsina del estómago y de la tripsina del páncreas, que atacan proteínas; de la renina, que cuagula la leche; de la papaina, enzima proteolítica que se encuentra en la papaya y de las catepsinas, también proteasas, que se encuentran en las células. Las enzimas relacionadas con la cuagulación de la sangre, como son la trombina, la plasmina, el plasminógeno, etc. reciben también nombres sistematizados.

Al descrubir nuevas enzimas y proceder a su caracterización estricta se aplicaron reglas de nomenclatura basadas en el nombre del sustrato atacado, o en el tipo general de sustrato, o en la reacción catalizada y se ha añadido convencionalmente, la terminación -asa. Por ejemplo: las lipasas (hidrolizan lipidos o grasas), las amilasas (hidrolizan almidon), las proteasas (hidrolizan proteinas), las esterasas (basado en la unión general de tipo éster presentes en muchas sustancias), colesterol estrerasa (si la esterasa es específica de los esteres de colesterol) y acetilcolina esterasa (si la estersa de la acetilcolina). Otros ejemplos: Las fosfatasas son enzimas que atacan las uniones éster, pero en este caso, toman su nombre del grupo vecino a la unión que van a atacar, de manera que se denominan fosfatasas (cuando quitan una molécula de monofosfato), pirofosfatasas (cuando quitan el ácido fosfórico como esteres dobles (pirofosfatos), o triples, etc.) De la misma manera, las carbohidrasas se denominan así genericamente, pero pueden comprender enzimas con nombres proveniente del sustrato particular sobre el que actuan como la amilasa que ataca al almidón y la celulasa que actúa sobre la celulosa y, en otras ocaciones, se denominan de acuerdo con la unión atacada, como la b -glucosidasa que actúa sobre las uniones b -glucosídicas. Los ejemplos se pueden extender a todos los terrenos de la actividad enzimática, como en las enzimas proteolíticas, las fosforilasas, las nucleasas, etc.

Esta manera de llamarlas, se demostro que era inadecuada porque al descubrirse varias enzimas, notaron que varias enzimas catalizaban reacciones diferentes del mismo sustrato, por ejemplo, oxidacion o reduccion de la funcion alcohol de un azucar.

Aunque el sufijo –asa continua en uso; actualmente, al nombrar a las enzimas, se enfatiza el tipo de reaccion catalizada. Por ejemplo: las hidrogenasas catalizan la eliminacion de hidrogeno y las transferasas, reacciones de transferencia de grupo. Con el descubrimiento de mas y mas enzimas, surgieron ambiguedades y con frecuencia no estaba claro cual era la enzima que un investigador deseaba estudiar. Para remediar esta deficiencia, la Comisión para el estudio de las enzimas, que constituye con respecto a los sistemas anteriores un punto de vista más uniforme, preciso y descriptivo; esta formada por la Union Internacional de Bioquimica (IUB) adopto, en 1964, un sistema complejo pero inequivoco de la nomenglatura enzimatica basado en el mecanismo de reaccion.

El sistema se basa en la reacción química catalizada que es la propiedad específica que caracteriza a cada enzima las cuales se agrupan en clases, porque catalizan procesos semejantes, y en subclases que especifican con mayor exactitud la reacción particular considerada. En general, las enzimas reciben un nombre de acuerdo con el sustrato o los sustratos que participan en la reacción seguido por el tipo de reacción catalizada y, por fin, la terminación -asa. A menudo los nombres así obtenidos resultan largos y complejos, por lo que es muy dificil que en la práctica se pueda excluir el uso de los nombres triviales, consagrados por la costumbre. Sin embargo, con fines de sistematización, se reconoce la necesidad de aceptar el nuevo sistema.

Aunque su claridad y carencia de ambigüedad recomiendan al sistema de nomenglatura IUB para trabajos de investigacion, nombres mas ambiguos, pero basante mas cortos persisten en libros de texto y en el laboratorio clinico. Por esta razon, a continuacion solo se presenta principios generales del sistema IUB:


Las reacciones y las enzimas que las catalizan se dividen en 6 clases principales, cada una con 4 a 13 subclases.

El nombre de la enzima tiene 2 partes: la primera es el nombre del o los sustratos; la segunda, con terminacion –asa, indica el tipo de reaccion catalizada.
Informacion adicional, si es necesario aclarar la reaccion, puede seguir el parentesis. Por ejemplo: la enzima que cataliza L-malato + NAD= = piruvato + CO2 NADH + H= , se denomina como 1.1.1.37 L-malato:NAD+ oxidorreductasa (descarboxilante).
Cada enzima tiene un numero clave (E.C.) que caracteriza al tipo de reaccion según la clase (primer digito), subclase (segundo digito) y subclase (tercer digito). El cuarto digito es para la enzima especifica. Asi, E.C. 2.7.1.1 denota la clase 2 (una transferasa), subclase 7 (transferencia de fosfato), sub-clase 1 (una funcion alcohol como aceptor de fosfato). El ultimo digito denota a la enzima hexocinasa o ATP: D-hexosa-6-fosforotransferasa, enzima que cataliza la transferencia de fosfato desde el ATP al grupo hidroxilo de carbono 6 de la glucosa.
Al final de sus y trabajos, clasifico las enzimas en seis grupos principales, correspondientes por sus términos a las raciones que cada enzima ejerce sobre el sustrato. Estos grupos se subdividen en otro, según el tipo de sustrato y los átomos concretos que son sensibles a sus acciones. Estos seis grupos son los siguientes:


Oxidoreductasas


Transferasas


Hidrolasas


Isomerasa


Liasas

1.Oxido-reductasas: Son las enzimas relacionadas con las oxidaciones y las reducciones biológicas que intervienen de modo fundamental en los procesos de respiración y fermentación. Las oxidoreductasas son importantes a nivel de algunas cadenas metabólicas, como la escisión enzimática de la glucosa, fabricando también el ATP, verdadero almacén de energía. Extrayendo dos átomos de hidrógeno, catalizan las oxidaciones de muchas moléculas orgánicas presentes en el protoplasma; los átomos de hidrógeno tomados del sustrato son cedidos a algún captor.

En esta clase se encuentran las siguientes subclases principales: Deshidrogenasas y oxidasas. Son más de un centenar de enzimas en cuyos sistemas actúan como donadores, alcoholes, oxácidos aldehidos, cetonas, aminoácidos, DPNH2, TPNH2, y muchos otros compuestos y, como receptores, las propias coenzimas DPN y TPN, citocromos, O2, etc.

2.Las Transferasas: Estas enzimas catalizan la transferencia de una parte de la molécula (dadora) a otra (aceptora). Su clasificación se basa en la naturaleza química del sustrato atacado y en la del aceptor. También este grupo de enzimas actúan sobre los sustratos mas diversos, transfiriendo grupos metilo, aldehído, glucosilo, amina, sulfató, sulfúrico, etc.

3.Las Hidrolasas: Esta clase de enzimas actúan normalmente sobre las grandes moléculas del protoplasma, como son la de glicógeno, las grasas y las proteínas. La acción catalítica se expresa en la escisión de los enlaces entre átomos de carbono y nitrógeno (C-Ni) o carbono oxigeno (C-O); Simultáneamente se obtiene la hidrólisis (reacción de un compuesto con el agua)de una molécula de agua. El hidrógeno y el oxidrilo resultantes de la hidrólisis se unen respectivamente a las dos moléculas obtenidas por la ruptura de los mencionados enlaces. La clasificación de estas enzimas se realiza en función del tipo de enlace químico sobre el que actúan.

A este grupo pertenecen proteínas muy conocidas: la pepsina, presente en el jugo gástrico, y la tripsina y la quimiotripsina, segregada por el páncreas. Desempeñan un papel esencial en los procesos digestivos, puesto que hidrolizan enlaces pépticos, estéricos y glucosídicos.

4.Las isomerasas:Transforman ciertas sustancias en otras isómeras, es decir, de idéntica formula empírica pero con distinto desarrollo. Son las enzimas que catalizan diversos tipos de isomerización, sea óptica, geométrica, funcional, de posición, etc. Se dividen en varias subclases.

Las racemasas y las epimerasas actúan en la racemización de los aminoácidos y en la epimerización de los azúcares. Las primeras son en realidad pares de enzimas específicas para los dos isómeros y que producen un solo producto común. Las isomerasas cis – trans modifican la configuración geométrica a nivel de un doble ligadura. Las óxido – reductasas intramoleculares cetalizan la interconversión de aldosas y cetosas, oxidando un grupo CHOH y reduciendo al mismo tiempo al C = O vecino, como en el caso de la triosa fosfato isomerasa, presente en el proceso de la glucólisis ; en otros casos cambian de lugar dobles ligaduras, como en la (tabla) isopentenil fosfato isomerasa, indispensable en el cambio biosinético del escualeno y el colesterol. Por fin las transferasas intramoleculares (o mutasas) pueden facilitar el traspaso de grupos acilo, o fosforilo de una parte a otra de la molécula, como la lisolecitina acil mutasa que transforma la 2 – lisolecitina en 3 – lisolecitina, etc. Algunas isomerasa actúan realizando inversiones muy complejas, como transformar compuestos aldehídos en compuestos cetona, o viceversa. Estas ultimas desarrollan una oxidorreducción dentro de la propia molécula (oxido rreductasa intramoleculares)sobre la que actúan, quitando hidrógeno, a algunos grupos y reduciendo otros; actúan ampliamente sobre los aminoácidos, los hidroxácidos, hidratos de carbono y sus derivados.

5.Las Liasas: Estas enzimas escinden (raramente construyen) enlaces entre átomos de carbono, o bien entre carbono y oxigeno, carbono y nitrógeno, y carbono y azufre. Los grupos separados de las moléculas que de sustrato son casi el agua, el anhídrido carbónico, y el amoniaco. Algunas liasa actúan sobre compuestos orgánicos fosforados muy tóxicos, escindiéndolos; otros separan el carbono de numerosos sustratos.

6.Las Ligasas: Es un grupo de enzimas que permite la unión de dos moléculas, lo cual sucede simultáneamente a la degradación del ATP, que, en rigor, libera la energía necesaria para llevar a cabo la unión de las primeras. Se trata de un grupo de enzimas muy importantes y recién conocidas, pues antes se pensaba que este efecto se llevaba a cabo por la acción conjunta de dos enzimas, una fosfocinasa, para fosforilar a una sustancia A (A + ATP A - ℗ + ADP) y una transferasa que pasaría y uniría esa sustancia A, con otra, B (A -℗ + B A – B + Pi ). A este grupo pertenecen enzimas de gran relevancia reciente, como las aminoácido –ARNt ligasas conocidas habitualmente con el nombre de sintetasas de aminoácidos –ARNt o enzimas activadoras de aminoácidos que representan el primer paso en el proceso biosintético de las proteínas, y que forman uniones C-O; las ácido-tiol ligasas, un ejemplo típico de las cuales es la acetil coenzima. A sintetasa, que forma acetil coenzima. A partir de ácido acético y coenzima A ; las ligasas ácido – amoniaco (glutamina sintetasa), y las ligasas ácido-aminoácido o sintetasas de péptidos, algunos de cuyos ejemplos más conocidos son la glutación sintetasa, la carnosina sintetasa, etc.

La acción de estas enzimas se manifiesta con la formación de enlaces entre átomos de carbono y oxigeno de diversas moléculas, o bien entre carbono y azufre, carbono y nitrógeno y carbono y carbono. Las ligasas utilizan siempre, para el proceso de reacción, la energía proporcionada por el ATP o compuestos homólogos que son degradados, Por consiguiente las enzimas de esta clase son los únicos que intervienen en reacción no espontánea desde un punto de vista termodinámico; Actúan sobre los sustratos más diversos y revisten particular importancia en el metabolismo de los ácidos nucleicos.

Estas reacciones enzimáticas se desarrollan en dos tiempos: en el primero se forma un complejo intermedio con potencia energética muy alta-, en el segundo utilizan la energía obtenida para realizar la reacción de síntesis.

CINETICA ENZIMATICA

Cinética enzimática

La cinética enzimática estudia la velocidad de las reacciones químicas que son catalizadas por las enzimas. El estudio de la cinética de una enzima permite explicar los detalles de su mecanismo catalítico, su papel en el metabolismo, cómo es controlada su actividad en la célula y cómo puede ser inhibida su actividad por fármacos o venenos o potenciada por otro tipo de moléculas.

Las enzimas son proteínas (macromoléculas) con la capacidad de manipular otras moléculas, denominadas sustratos. Un sustrato es capaz de unirse al centro catalítico de la enzima que lo reconozca y transformarse en un producto a lo largo de una serie de pasos denominados mecanismo enzimático. Algunas enzimas pueden unir varios sustratos diferentes y/o liberar diversos productos, como es el caso de las proteasas al romper una proteína en dos polipéptidos. En otros casos, se produce la unión simultánea de dos sustratos, como en el caso de la ADN polimerasa, que es capaz de incorporar un nucleótido (sustrato 1) a una hebra de ADN (sustrato 2). Aunque todos estos mecanismos suelen seguir una compleja serie de pasos, también suelen presentar una etapa limitante que determina la velocidad final de toda la reacción. Esta etapa limitante puede consistir en una reacción química o en un cambio conformacional de la enzima o del sustrato.

El conocimiento adquirido acerca de la estructura de las enzimas ha sido de gran ayuda en la visualización e interpretación de los datos cinéticos. Por ejemplo, la estructura puede sugerir cómo permanecen unidos sustrato y producto durante la catálisis, qué cambios conformacionales ocurren durante la reacción, o incluso el papel en particular de determinados residuos aminoácidos en el mecanismo catalítico. Algunas enzimas modifican su conformación significativamente durante la reacción, en cuyo caso, puede ser crucial saber la estructura molecular de la enzima con y sin sustrato unido (se suelen usar análogos que se unen pero no permiten llevar a cabo la reacción y mantienen a la enzima permanentemente en la conformación de sustrato unido).

Los mecanismos enzimáticos pueden ser divididos en mecanismo de único sustrato o mecanismo de múltiples sustratos. Los estudios cinéticos llevados a cabo en enzimas que solo unen un sustrato, como la triosafosfato isomerasa, pretenden medir la afinidad con la que se une el sustrato y la velocidad con la que lo transforma en producto. Por otro lado, al estudiar una enzima que une varios sustratos, como la dihidrofolato reductasa, la cinética enzimática puede mostrar también el orden en el que se unen los sustratos y el orden en el que los productos son liberados.
Sin embargo, no todas las catálisis biológicas son llevadas a cabo por enzimas proteicas. Existen moléculas catalíticas basadas en el ARN, como las ribozimas y los ribosomas, esenciales para el splicing alternativo y la traducción del ARNm, respectivamente. La principal diferencia entre las ribozimas y las enzimas radica en el limitado número de reacciones que pueden llevar a cabo las primeras, aunque sus mecanismos de reacción y sus cinéticas pueden ser estudiadas y clasificadas por los mismos métodos.

Principios generales

La reacción catalizada por una enzima utiliza la misma cantidad de sustrato y genera la misma cantidad de producto que una reacción no catalizada. Al igual que ocurre en otros tipos de catálisis, las enzimas no alteran en absoluto el equilibrio de la reacción entre sustrato y producto.[1] Sin embargo, al contrario que las reacciones químicas, las enzimas se saturan. Esto significa que a mayor cantidad de sustrato, mayor número de centros catalíticos estarán ocupados, lo que incrementará la eficiencia de la reacción, hasta el momento en que todos los sitios posibles estén ocupados. En ese momento se habrá alcanzado el punto de saturación de la enzima y, aunque se añada más sustrato, no aumentará más la eficiencia.

Las dos propiedades cinéticas más importantes de una enzima son: el tiempo que tarda en saturarse con un sustrato en particular y la máxima velocidad de reacción que pueda alcanzar. El conocimiento de estas propiedades hace posible hipotetizar acerca del comportamiento de una enzima en el ambiente celular y predecir cómo responderá frente a un cambio de esas condiciones.

Ensayos enzimáticos

Un ensayo enzimático es un procedimiento, llevado a cabo en un laboratorio, mediante el cual se puede medir la velocidad de una reacción enzimática. Como las enzimas no se consumen en la reacción que catalizan, los ensayos enzimáticos suelen medir los cambios experimentados bien en la concentración de sustrato (que va decreciendo), bien en la concentración de producto (que va aumentando). Existen diversos métodos para realizar estas medidas. La espectrofotometría permite detectar cambios en la absorbancia de luz por parte del sustrato o del producto (según la concentración de estos) y la radiometría implica incorporación o liberación de radiactividad para medir la cantidad de producto obtenido por tiempo. Los ensayos espectrofotométricos son los más utilizados, ya que permiten medir la velocidad de la reacción de forma continua. Por el contrario, los ensayos radiométricos requieren retirar las muestras para medirlas, por lo que son ensayos discontinuos. Sin embargo, estos ensayos son extremadamente sensibles y permiten detectar niveles muy bajos de actividad enzimática.[2] También se puede utilizar la espectrometría de masas para detectar la incorporación o liberación de isótopos estables cuando el sustrato es convertido en producto.

Los ensayos enzimáticos más sensibles utilizan láseres dirigidos a través de un microscopio para observar los cambios producidos en enzimas individuales cuando catalizan una reacción. Estas medidas pueden utilizar cambios producidos en la fluorescencia de cofactores que intervienen en el mecanismo de catálisis o bien unir moléculas fluorescentes en lugares específicos de la enzima, que permitan detectar movimientos ocurridos durante la catálisis.[3] Estos estudios están dando una nueva visión de la cinética y la dinámica de las moléculas individuales, en oposición a los estudios de cinética enzimática tradicionales, en los que se observa y se mide el comportamiento de una población de millones de moléculas de enzima.
En la figura de la derecha se puede observar la típica evolución de una curva obtenida en un ensayo enzimático. Inicialmente, la enzima transforma el sustrato en producto siguiendo un comportamiento lineal. A medida que avanza la reacción, se va agotando la cantidad de sustrato y va disminuyendo la cantidad de producto que se genera por unidad de tiempo (disminuye la velocidad de la reacción), lo que se manifiesta en forma de curva asintótica en la gráfica. Dependiendo de las condiciones del ensayo y del tipo de enzima, el período inicial puede durar desde milisegundos hasta horas. Los ensayos enzimáticos suelen estar estandarizados para que el período inicial dure en torno a un minuto, para llevar a cabo las medidas más fácilmente. Sin embargo, los modernos equipos de mezcla rápida de líquidos permiten llevar a cabo medidas cinéticas de períodos iniciales cuya duración puede llegar a ser inferior a un segundo.[4] Este tipo de ensayos rápidos son esenciales para medidas de la cinética del estado estacionario, discutida más abajo.

La mayoría de los estudios de cinética enzimática se centran en el período inicial, es decir, en la zona lineal de la reacción enzimática. Sin embargo, también es posible medir toda la curva de la reacción y ajustar estos datos a una ecuación no lineal. Esta forma de medir las reacciones enzimáticas es denominada análisis de la curva de progreso.[5] Esta aproximación es muy útil como alternativa a las cinéticas rápidas, cuando el período inicial es demasiado rápido para ser medido con precisión.

Factores físico-químicos que pueden modificar la actividad enzimática

Temperatura: las enzimas son sensibles a la temperatura pudiendo verse modificada su actividad por este factor. Los rangos de temperaturas óptimos pueden llegar a variar sustancialmente de unas enzimas a otras. Normalmente, a medida que aumente la temperatura, una enzima verá incrementada su actividad hasta el momento en que comience la desnaturalización de la misma, que dará lugar a una reducción progresiva de dicha actividad.
pH: el rango de pH óptimo también es muy variable entre diferentes enzimas. Si el pH del medio se aleja del óptimo de la enzima, esta verá modificada su carga eléctrica al aceptar o donar protones, lo que modificará la estructura de los aminoácidos y por tanto la actividad enzimática.
Concentración salina: al igual que en los casos anteriormente mencionados, la concentración de sales del medio es crucial para una óptima actividad enzimática. Una elevada concentración o una ausencia de sales en el medio pueden impedir la actividad enzimática, ya que las enzimas
precisan de una adecuada concentración de iones para mantener su carga y su estructura.

Reacciones con un sustrato

Las enzimas que presentan un mecanismo de único sustrato incluyen isomerasas, tales como la triosafosfato isomerasa o la bisfosfoglicerato mutasa, y liasas intramoleculares, tales como la adenilato ciclasa o la ribozima ARN-liasa.[6] Sin embargo, existen ciertas reacciones enzimáticas de único sustrato que no pertenecen a esta categoría de mecanismos, como es el caso de la reacción catalizada por la catalasa. La catalasa reacciona inicialmente con una molécula de peróxido de hidrógeno (agua oxigenada) y queda en un estado oxidado tras liberar el producto (agua), y, posteriormente, es reducida por una segunda molécula de sustrato. Aunque durante la reacción solo participa un sustrato, la existencia de un intermediario enzimático modificado permite incluir al mecanismo de la catalasa en la categoría de mecanismos de ping-pong, un tipo de mecanismo discutido más adelante.

Cinética de Michaelis-Menten

Como las reacciones catalizadas por enzimas son saturables, la velocidad de catálisis no muestra un comportamiento lineal en una gráfica al aumentar la concentración de sustrato. Si la velocidad inicial de la reacción se mide a una determinada concentración de sustrato (representado como [S]), la velocidad de la reacción (representado como V) aumenta linealmente con el aumento de la [S], como se puede ver en la figura. Sin embargo, cuando aumentamos la [S], la enzima se satura de sustrato y alcanza su velocidad máxima (Vmax), que no sobrepasará en ningún caso, independientemente de la [S].

El modelo de cinética michaeliana para una reacción de único sustrato se puede ver en la figura de la izquierda. Primeramente, tiene lugar una reacción química bimolecular entre la enzima E y el sustrato S, formándose el complejo enzima-sustrato ES. Aunque el mecanismo enzimático para una reacción unimolecular puede ser bastante complejo, existe una etapa enzimática limitante que permite que el mecanismo sea simplificado como una etapa cinética única cuya constante es k2.)
k2 también llamado kcat o número de recambio, hace referencia al máximo número de reacciones enzimáticas catalizadas por segundo.
A bajas concentraciones de sustrato, la enzima permanece en un equilibrio constante entre la forma libre E y el complejo enzima-sustrato ES. Aumentando la [S] también aumentamos la [ES] a expensas de la [E], desplazando el equilibrio de la reacción hacia la derecha. Puesto que la velocidad de reacción depende de la [ES], la velocidad es sensible a pequeños cambios en la [S]. Sin embargo, a altas [S], la enzima se satura y solo queda la forma unida al sustrato ES. Bajo estas condiciones, la velocidad de la reacción (v ≈ k2[E]tot = Vmax) deja de ser sensible a pequeños cambios en la [S]. En este caso, la concentración total de enzima ([E]tot) es aproximadamente igual a la concentración del complejo ES:

La ecuación de Michaelis-Menten[7] describe como la velocidad de la reacción depende del equilibrio entre la [S] y la constante k2. Leonor Michaelis y Maud Menten demostraron que si k2 es mucho menor que k1 (aproximación del equilibrio) se puede deducir la siguiente ecuación:
La constante de Michaelis Km se define como la concentración a la que la velocidad de la reacción enzimática es la mitad de la Vmax. Esto puede verificarse sustituyendo la concentración de sustrato por dicha constante ([S] = Km). Si la etapa limitante de la velocidad de la reacción es lenta comparada con la disociación de sustrato (k2 <<< title="Disociación" href="http://es.wikipedia.org/wiki/Disociaci%C3%B3n">disociación del complejo ES, aunque sea una situación relativamente rara.
La situación más común, donde k2 > k1, es denominada cinética de Briggs-Haldane.[8] La ecuación de Michaelis-Menten aún se mantiene bajo estas condiciones más generales, como puede derivarse de la aproximación del estado estacionario. Durante el período inicial, la velocidad de la reacción es más o menos constante, indicando que la [ES] también se mantendrá constante:
Con lo cual, después de operar todos los factores, obtenemos una fórmula general para la velocidad de la reacción que coincide con la ecuación de Michaelis-Menten:
La constante de especificidad kcat / Km mide la eficiencia con la que una enzima convierte un sustrato en producto. Utilizando la definición de la constante de Michaelis Km, la ecuación de Michaelis-Menten podría escribirse de la siguiente forma:
donde [E] es la concentración de enzima libre. Así, la constante de especificidad se convierte en una constante bimolecular efectiva de la enzima libre que reacciona con sustrato libre para formar producto. Esta constante viene definida por la frecuencia con la que el sustrato y la enzima se encuentran en una solución, y ronda aproximadamente un valor de 1010 M-1 s-1 a 25º C. Curiosamente, este máximo no depende del tamaño del sustrato o de la enzima. La proporción de las constantes de especificidad para dos sustratos es una comparación cuantitativa de la eficiencia de la enzima para convertir en productos dichos sustratos. La pendiente de la ecuación de Michaelis-Menten a bajas concentraciones de sustrato (cuando [S] << name="Representaci.C3.B3n_de_la_ecuaci.C3.B3n_">
Representación de la ecuación de Michaelis-Menten

La gráfica de velocidad frente a [S] mostrada anteriormente no es lineal. Aunque a bajas concentraciones de sustrato se mantenga lineal, se va curvando a medida que aumenta la concentración de sustrato. Antes de la llegada de los ordenadores, que permiten ajustar regresiones no lineales de forma sencilla, podía llegar a ser realmente difícil estimar los valores de la Km y la Vmax en las gráficas no lineales. Esto dio lugar a que varios investigadores concentraran sus esfuerzos en desarrollar linearizaciones de la ecuación de Michaelis-Menten, dando como resultado la gráfica de Lineweaver-Burke y el diagrama de Eadie-Hofstee. Con el siguiente tutorial de la cinética de Michaelis-Menten realizado en la Universidad de Virginia α, se puede simular el comportamiento de una enzima variando las constantes cinéticas.
La gráfica de Lineweaver-Burk o representación de doble recíproco es la forma más común de mostrar los datos cinéticos. Para ello, se toman los valores inversos a ambos lados de la ecuación de Michaelis-Menten. Como se puede apreciar en la figura de la derecha, el resultado de este tipo de representación es una línea recta cuya ecuación es y = mx + c, siendo el punto de corte entre la recta y el eje de ordenadas equivalente a 1/Vmax, y el punto de corte entre la recta y el eje de abscisas equivalente a -1/Km.

Obviamente, no se pueden tomar valores negativos para 1/[S]; el mínimo valor posible es 1/[S] = 0, que correspondería a una concentración infinita de sustrato, donde 1/v = 1/Vmax. El valor del punto de corte entre la recta y el eje x es una extrapolación de datos experimentales obtenidos en laboratorio. Generalmente, las gráficas de Lineweaver-Burke distorsionan las medidas realizadas a bajas concentraciones de sustrato y esto puede dar lugar a estimaciones no muy exactas de la Vmax y de la Km.[9] Un modelo lineal mucho más exacto es el diagrama de Eadie-Hofstee, pero en las investigaciones científicas actuales, todo este tipo de linearizaciones han quedado obsoletos y han sido sustituidos por métodos más fiables basados en análisis de regresión no lineal. Para analizar los datos es conveniente la normalización de los mismos, ya que esto puede ayudar disminuyendo la cantidad de trabajo experimental a realizar e incrementando la fiabilidad del análisis.[10]

Significado de las constantes cinéticas

La importancia del estudio de la cinética enzimática reside en dos principios básicos. En primer lugar, permite explicar cómo funciona una enzima, y en segundo lugar, permite predecir cómo se comportará esa enzima in vivo. Las constantes cinéticas definidas anteriormente, Km y Vmax, son los pilares fundamentales a la hora de intentar comprender el funcionamiento de las enzimas en el control del metabolismo.

Sin embargo, llevar a cabo estas predicciones no es trivial, incluso en los sistemas más simples. Por ejemplo, la malato deshidrogenasa sintetiza, en el interior de la mitocondria, oxalacetato, el cual puede ser sustrato de diversas enzimas como la citrato sintasa, en el ciclo de los ácidos tricarboxílicos, la fosfoenolpiruvato carboxiquinasa, en la gluconeogénesis, o la aspartato aminotransferasa, en la biosíntesis de ácido aspártico. Para ser capaz de predecir cuánto oxalacetato será desviado por cada una de las rutas es necesario saber tanto la concentración del oxalacetato como la concentración y los parámetros cinéticos de cada una de las enzimas. Este ejemplo denota la complejidad que podemos llegar a encontrar al intentar predecir el comportamiento de rutas metabólicas completas o de organismos enteros, por medio de modelos matemáticos. Aunque estos objetivos aún no se han alcanzado en eucariotas, se han obtenido
ciertos progresos en bacterias, utilizando modelos del metabolismo de Escherichia coli.[11] [12]

Reacciones multisustrato

Las reacciones multisustrato siguen una serie de complejas ecuaciones que describen cómo se unen los sustratos y en qué orden lo hacen. El análisis de estas reacciones es mucho más sencillo si la concentración del sustrato A se mantiene constante y la del sustrato B varía. En estas condiciones, la enzima se comporta igual que una enzima de único sustrato, por lo que en una gráfica de velocidad la concentración de sustrato dará unos valores aparentes de las constantes cinéticas, Km y Vmax, para el sustrato B. Si se realizan una serie de medidas a diferentes concentraciones fijas de sustrato A, los datos obtenidos permitirán saber a qué tipo de mecanismo pertenece la reacción enzimática. Para una enzima que una dos sustratos A y B, y los
transforme en dos productos P y Q, existen dos tipos de mecanismos descritos hasta ahora.

Mecanismo de complejo ternario

Las enzimas (E) que presentan este mecanismo de reacción unen al mismo tiempo los dos sustratos (A y B), dando lugar a un complejo ternario EAB. El orden secuencial de unión de los sustratos puede ser al azar (mecanismo al azar) o seguir un orden en particular (mecanismo ordenado). Si fijamos la concentración del sustrato A y variamos la de B, y representamos gráficamente el comportamiento de la enzima mediante un diagrama de Lineweaver-Burke, obtendremos una serie de rectas con un punto de intersección común a todas ellas.
Entre las enzimas que presentan este mecanismo podemos encontrar la glutation S-transferasa,[13] la dihidrofolato reductasa[14] y la ADN polimerasa.[15] Los siguientes enlaces muestran animaciones del mecanismo de complejo ternario de la dihidrofolato reductasa β y de la ADN polimerasa γ.

Mecanismo de ping-pong

Como se puede apreciar en la figura de la derecha, las enzimas con un mecanismo de ping-pong pueden presentar dos estados, la conformación normal (E) y la conformación modificada químicamente (E*) o conformación intermedia. En este tipo de mecanismo, el sustrato A se une a la enzima E, que pasa a un estado intermedio E*, por ejemplo, por transferencia de un grupo químico al centro activo de la enzima, pudiendo ya ser liberado en forma de producto P. Únicamente cuando el sustrato A ya ha sido liberado del centro activo de la enzima puede unirse el sustrato B, que devuelve a la enzima modificada E* a su estado original E, y liberarlo en forma de producto Q. Si fijamos la concentración de A y variamos la de B, y representamos gráficamente una enzima con mecanismo de ping-pong en un diagrama de Lineweaver-Burke, obtendremos una serie de rectas paralelas entre sí.
Entre las enzimas con este tipo de mecanismo podemos encontrar alguna oxidorreductasa, como la tiorredoxima peroxidasa,[16] transfereasas, como la acil-neuraminato citidil transferasa,[17] y serin proteasas, como la tripsina y la quimiotripsina.[18] Las serin-proteasas conforman una diversa familia de enzimas muy comunes, que incluyen enzimas digestivas (tripsina, quimiotripsina y elastasa), varias enzimas del proceso de coagulación y muchas otras. En las serin-proteasas, el estado intermedio E* es una especie acilada en una serina del centro catalítico de la enzima. El siguiente enlace muestra una animación del mecanismo catalítico de la quimiotripsina δ.

Cinéticas no Michaelianas

Algunas reacciones enzimáticas dan lugar a curvas sigmoideas, al ser representadas en una curva de saturación, lo que suele indicar una unión cooperativa del sustrato al centro catalítico de la enzima. Esto quiere decir que la unión de una molécula de sustrato influye en la unión de las moléculas de sustrato posteriores. Este comportamiento es el más común en las enzimas multiméricas, que presentan varias zonas de interacción con el sustrato.[19] El mecanismo de cooperación es semejante al observado en la hemoglobina. La unión de una molécula de sustrato a una de las zonas de interacción altera significativamente la afinidad por el sustrato de las demás zonas de interacción. Las enzimas con este tipo de comportamiento son denominadas alostéricas. La cooperatividad positiva tiene lugar cuando la primera molécula de sustrato unida incrementa la afinidad del resto de zonas de interacción. Por el contrario, la cooperatividad negativa tiene lugar cuando la primera molécula de sustrato unida reduce la afinidad de la enzima por nuevas moléculas de sustrato.
Como ejemplos de enzimas con cooperatividad positiva tenemos la aspartato transcarbamilasa bacteriana[20] y la fosfofructoquinasa,[21] y con cooperatividad negativa, la tirosil ARNt-transferasa de mamíferos.[22]
La cooperatividad es un fenómeno bastante común y puede llegar a ser crucial en la regulación de la respuesta enzimática a cambios en la concentración de sustrato. La cooperatividad positiva hace que la enzima sea mucho más sensible a la concentración de sustrato, con lo que su actividad puede llegar a variar en gran medida aunque se mueva en rangos muy estrechos de concentración de sustrato. Por el contrario, la cooperatividad negativa hace que la enzima sea insensible a pequeños cambios en la concentración de sustrato.
La ecuación de Hill[23] suele ser utilizada para describir cuantitativamente el grado de cooperatividad en cinéticas no michaelianas. El coeficiente de Hill (n) indica cuántas de las zonas de unión de sustrato de una enzima afectan a la afinidad de la unión del sustrato en el resto de las zonas de unión.